Non-heme iron hydroperoxo species in superoxide reductase as a catalyst for oxidation reactions.

نویسندگان

  • S Rat
  • S Ménage
  • F Thomas
  • V Nivière
چکیده

The non-heme high-spin ferric iron hydroperoxo species formed in superoxide reductase catalyzes oxidative aldehyde deformylation through its nucleophilic character. This species also acts as an electrophile to catalyze oxygen atom transfer in sulfoxidation reactions, highlighting the oxidation potential of non-heme iron hydroperoxo species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish...

متن کامل

A functional model for the cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR).

Superoxide reductases (SORs) are cysteine-ligated, non-heme iron enzymes that reduce toxic superoxide radicals (O2-). The functional role of the trans cysteinate, as well as the mechanism by which SOR reduces O2-, is unknown. Herein is described a rare example of a functional metalloenzyme analogue, which catalytically reduces superoxide in a proton-dependent mechanism, via a trans thiolate-lig...

متن کامل

Nonheme ferric hydroperoxo intermediates are efficient oxidants of bromide oxidation.

This work presents the first combined experimental and computational study that gives evidence of the electrophilic reactivity of a nonheme iron(III)-hydroperoxo species. We show that in contrast to their heme counterparts the nonheme iron(III)-hydroperoxo complexes are catalytically much more active and even more so than nonheme iron(IV)-oxo species.

متن کامل

A new understanding on how heme metabolism occurs in heme oxygenase: water-assisted oxo mechanism.

Heme metabolism by heme oxygenase (HO) is investigated with quantum mechanical/molecular mechanical (QM/MM) calculations. A mechanism assisted by water is proposed: (1) an iron-oxo species and a water molecule are generated by the heterolytic cleavage of the O-O bond of an iron-hydroperoxo species in a similar way to P450-mediated reactions, (2) a hydrogen atom abstraction by the iron-oxo speci...

متن کامل

Mechanistic insight into halide oxidation by non-heme iron complexes. Haloperoxidase versus halogenase activity.

This work presents the first detailed study on mechanistic aspects of halide oxidation by non-heme iron complexes. We show that while iron(III)-hydroperoxo complexes oxidise halides via oxygen atom transfer, the corresponding iron(IV)-oxo complex reacts via electron transfer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical communications

دوره 50 91  شماره 

صفحات  -

تاریخ انتشار 2014